In Defense of Young Founders

Sometime during the summer, a friend of mine questioned if young founders (let's say younger than 26) would be able to develop the biggest startups of the future. The argument was that startups of the future will trend towards hard tech. Technologies like biotech, robotics, AI, and material science each take years to build domain expertise, not to mention capital intensive. Both those form barriers for young founders to get started. Contrast this with the recent history of companies centered in information technology/internet startups. We all have the image of genius hacker developing applications as a teenager. This was (and still is) an open industry, where the tools for development are literally on everyone's desktop. With all that said, it sounds like we have to say goodbye to the garage startup. So are there any reasons for us to be optimistic about the young founder of the future? 

In the past 20 years, there have been many examples of student founders. Michael Dell, Bill Gates, Woz, and Steve Jobs all come to mind. Yet, it's hard to think of examples that stretch outside of this range, but we should fall prey to availability bias. 

A quick survey of Wikipedia shows that in each technological era, young founders have always been able to make a name for themselves. This list is highly biased towards US companies and not comprehensive by any means. However, it's no guarantee that this trend of young founders will continue just because of this past trend--just ask Nassim Taleb. Startups are a uniquely creative pursuit. They sit between, mathematics, a totally abstract pursuit, and history. In "Age and Outstanding Achievement", Simonton examines the age of peak creative/leadership output of different fields. Poetry, pure mathematics, and theoretical physics --which exhibit a peak age in one's late 20s or early 30s -- and novel writing, history, philosophy, medicine, and general scholarship -- exhibit a peak age in one's late 40s or early 50s. I think entrepreneurship skews towards the younger side, but why? Naval Ravikant and Marc Andreessen have already written two great blog posts about this, and I'll quote liberally from them here. 
"The first set comprises problems that are solved by an emotional state (poetry, painting), by loading a very difficult single framework into your head (math, physics, coding), and / or competition (driven by sex drive and time-sensitive). The latter set are more rational, are systems problems rather than point problems, and don’t have time-sensitive competition. " - Naval
Compared to internet startups.
"Modern entrepreneurship, especially web entrepreneurship, is extremely competitive / time sensitive, requires enormous amounts of iteration even withina single product life-cycle, and often requires solving many challenging technicaland business problems one after the other in a public view (with the opposite sex watching). So, it favors the young and single." - Naval
While Naval says that the young founder phenomena may be limited to the modern age, I'm making the generalization using the list built above that entrepreneurship has historically and will for the foreseeable future maintain this youthful skew. Another biological factor that may cause the youthful skew is the difference in peaks of fluid and crystallized intelligence. The young founder's combination of enthusiasm
and peak in fluid intelligence help her with identifying new markets, iterating on products, and more. Yet founders are not alone sufficient to create huge startups. Networks of other talented people, financing, production infrastructure, and the right knowledge also need to be in the mix. 

Although hard tech startups will always require fundamental knowledge to get started to iterate, knowledge is now easier to acquire than ever. Youtube videos, pirated textbooks, Reddit, and StackOverflow are just a few aggregated knowledge bases. Knowing things within a domain is now easy enough, but young entrepreneurs of today also have the advantage of seeing the non-obvious connections between different fields. arXiv and scihub.org have allowed for academic papers to be shared as soon as they are written. It's amazing to watch when implementations of DeepMind's paper is worked on by communities around the globe simultaneously. Usually in one week you can expect to see code from that paper, and in another week that code doing something as interesting as writing episodes of Friends or analyzing the genome.

Sadly not all fields enjoy the low startup costs of software and AI startups. The hard tech startup often needs lab space or large capital commitments to start building prototypes. Not to mention the speed of iteration for AI is probably some factor of 10x faster than biological experimentation or material science, because you don't have to wait for cells to reproduce (or die). Again, new innovations help are on the young founder's side. Infrastructure is now almost as easy to deploy in hard tech as it is for a developer to use AWS making the speed of iteration 10x and cost 10x less.
  • CRISPR -> 10x easier to gene edit anything "“With CRISPR, literally overnight what had been the biggest frustration of my career turned into an undergraduate side project,” says Reed, of Cornell University. “It was incredible.”
  • Desktop gene sequencing -> 10x cheaper and faster to analyze your genome
  • Cloud experimentation platforms -> 10x faster/cheaper way to run and scale. I compiled some other bio related advancements here.
  • AI applied to VR Content Dev -> 10x faster generation of scenery and characters
  • Open Source CS -> 10x more stable and useful software... for free
  • Physics/material science/chemistry/protein folding -> 10x faster experiments with computer simulation (just wait for quantum computers)
  • Bitcoin/cryptocurrency -> 10x better way to incentivize open protocol adoption. 

After a founder uses those basic tools of infrastructure to find an idea that looks like it could be impactful they leverage new funding mechanisms to can scale more quickly. The funding of innovative ideas has long been concentrated in the hands of a few. Governments once reigned supreme in funding things, as we became wealthier this trickled down to wealthy individuals, then to professional risk investors, and now to individuals in the form of crowd sales, Kickstarters, and most recently app-coin sales. If you accept the idea no one can judge innovation at the earliest of stages--that VCs and angels are using basic heuristics to cull bad startups as opposed to picking winners--then new funding mechanisms can. Free flow of capital through crowdfunding, more diversified risk at the seed stage benefits allows for more companies to get created. 

The internet and associated products should help entrepreneurship in general. If history is any guide, these types of innovation should help those out at the edge the most--today's young founders and others that are resource poor. More young founders can start hard tech companies of the future as the speed of iteration, cost of starting, and intellectual capital get easier to access. The more abstract tools get, the more quickly we can go from insight in mind to project in hand. I for one, am excited about this future.


TLDR

Young founders will win because
  1. the nature of innovation in has always skewed young
  2. and will the composition of entrepreneurship stay the same change (more geared towards fluid and less towards crystallized)
  3. the inputs of entrepreneurship are increasingly getting easy for young entrepreneurs to access ie: knowledge.
  4. the tools of development and capital are easier for anyone to acquire

Free Internet and Electricity (And Crypto) Everywhere

Before finals last year, I traveled to Belize to escape school. I felt the full force of the 100% humidity and the sun beating down on our backs at a scalding 97 degrees. Trouble began to brew as our car rental fell through. It wasn't turning out to be the relaxing getaway we thought it'd be. Luckily, we got a car from Pauncho's, a local car rental service, at double the normal insurance premium. We soon pulled away the airport, and set our sites on a long drive. 

Belize is undeniably beautiful. Glancing up from the road, I caught glimpses of lush greenery and huge mountains in the distance. And later in the trip, we spent time in a rainforest tree house, surrounded by the all the coos and croaks from all sides. However, this beauty was juxtaposed by the conditions of the towns we visited. I saw weather-worn houses and one-room schools deprived of access to internet. On the trip, we paid a huge premium for this privilege: $70 for a hotspot and 2GB of data. This was a luxury that many of the people I was surrounded by wouldn't be able to acquire. While meditating on that, I caught up with the connected world. 

I read about how solar energy was spreading around the developing world due to low-cost Chinese panels and about the new release of the 21 Bitcoin Computer. The "21" press release had a quote that stuck with me--"a miner in every chip and device". Sometime while reading this article, a flash of inspiration hit. I envisioned an integrated system to give access to the internet and electricity for free--a solar panel, embedded cryptocurrency miner, battery, and Wifi/3G access point. We would give the device and internet services away for free and earn money by mining cryptocurrency with free solar-generated electricity.

While we have 5 billion phones on the planet, developing nations around the world not only pay the highest costs per capita for smartphone usage but also for merely powering those phones. We know that the smartphone is everyone's gateway to the internet. However, the internet that you and I use at home is not what those in the developing world use. Phones are often unable to update their firmware because the cost of that download alone would eat up an entire month of data. Data plans can cost as much as 37% of a worker's salary per month in the developing world, and in rural areas, this is even more stark. These areas often don't have access to cellular service at all. I know this not only from months living in my ancestral farm town in China but also from this recent experience in Belize.

I recently ran a back of the envelope model to test the feasibility of this design. Thanks to increasing solar panel efficiency, decreasing hardware costs, cheap computing power, new 4G/LTE/Wifi satellites, and Bitcoin, the numbers seem to work. We could potentially give everyone in the world access to today's essential utilities--free internet, electricity, and access to a global financial system. Who knows if this idea will end up working, but the potential seems pretty great :) If anyone has any info to invalidate this idea, please do so; in the meantime, I'll be learning more about the crypto price dynamics, satellite internet, and reliability of hotspots. Then moving on to building a prototype!